Skip to main content Contents
Prev Up Next \(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf{A}}
\newcommand{\BB}{\vf{B}}
\newcommand{\CCv}{\vf{C}}
\newcommand{\EE}{\vf{E}}
\newcommand{\FF}{\vf{F}}
\newcommand{\GG}{\vf{G}}
\newcommand{\HHv}{\vf{H}}
\newcommand{\II}{\vf{I}}
\newcommand{\JJ}{\vf{J}}
\newcommand{\KKv}{\vf{Kv}}
\renewcommand{\SS}{\vf{S}}
\renewcommand{\aa}{\VF{a}}
\newcommand{\bb}{\VF{b}}
\newcommand{\ee}{\VF{e}}
\newcommand{\gv}{\VF{g}}
\newcommand{\iv}{\vf{imath}}
\newcommand{\rr}{\VF{r}}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF{u}}
\newcommand{\vv}{\VF{v}}
\newcommand{\ww}{\VF{w}}
\newcommand{\grad}{\vf{\nabla}}
\newcommand{\zero}{\vf{0}}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\LLv}{\vf{L}}
\newcommand{\OOb}{\boldsymbol{O}}
\newcommand{\PPv}{\vf{P}_\text{cm}}
\newcommand{\RRv}{\vf{R}_\text{cm}}
\newcommand{\ff}{\vf{f}}
\newcommand{\pp}{\vf{p}}
\newcommand{\tauv}{\vf{\tau}}
\newcommand{\Lap}{\nabla^2}
\newcommand{\Hop}{H_\text{op}}
\newcommand{\Lop}{L_\text{op}}
\newcommand{\Hhat}{\hat{H}}
\newcommand{\Lhat}{\hat{L}}
\newcommand{\defeq}{\overset{\rm def}{=}}
\newcommand{\absm}{\vert m\vert}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\dV}{dV}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 10.8 Curvature
The tangent vector \(\TT\) has constant magnitude, and changes only in direction. Thus, its derivative measures how much the curves bends — this is the curvature \(\kappa\text{:}\)
\begin{equation}
\kappa = \left| {d\TT\over ds} \right| .\tag{10.8.1}
\end{equation}
If \(\kappa\ne0\text{,}\) then the curve bends in a particular direction, the principal unit normal vector \(\NN\text{,}\) given by
\begin{equation}
\NN = {1\over\kappa} {d\TT\over ds} .\tag{10.8.2}
\end{equation}
It is clear that \(\NN\) is a unit vector; we now show it is normal (perpendicular) to the curve in the sense that \(\NN\perp\TT\text{:}\)
\begin{equation}
1 = \TT\cdot\TT
\Longrightarrow
0 = {d\over ds}(\TT\cdot\TT)
= 2 \TT \cdot {d\TT\over ds}
= 2\kappa \TT \cdot \NN .\tag{10.8.3}
\end{equation}
One also defines the unit binormal vector \(\BB=\TT\times\NN\text{.}\)
Since it is often difficult in practice to determine \(s\text{,}\) it is useful to replace derivatives with respect to \(s\) by derivatives with respect to \(u\) by suitably multiplying by \(v=ds/du\text{.}\) We obtain
\begin{equation}
{d\TT\over du} = \kappa v \, \NN .\tag{10.8.4}
\end{equation}
We can now rewrite velocity and acceleration in terms of their tangential and normal components, i.e. we can expand \(\vv\) and \(\aa\) in terms of the orthonormal vectors \(\TT\) and \(\NN\text{.}\) We have first of all
\begin{equation}
\vv = v \, \TT\tag{10.8.5}
\end{equation}
from which it follows that
\begin{align*}
\aa \amp= {dv\over du} \, \TT + v \, {d\TT\over du}\\
\amp= {dv\over du} \, \TT + \kappa v^2 \, \NN\\
\amp = : a_T \, \TT + a_N \, \NN
\end{align*}
where the last line is a definition. It is now easy to see that
\begin{equation}
\kappa = {|\vv\times\aa| \over v^3}\tag{10.8.6}
\end{equation}
and this formula provides a way to calculate \(\kappa\) directly.
If the parametric curve lies in the plane, so that \(z=0\text{,}\) the above formula for the curvature simplifies considerably. We have
\begin{align*}
\vv \amp= \dot{x}\xhat + \dot{y}\yhat
= {dx\over du}\xhat + {dy\over du}\yhat\\
\aa \amp= \ddot{x}\xhat + \ddot{y}\yhat
= {d^2x\over du^2}\xhat + {d^2y\over du^2}\yhat
\end{align*}
so that
\begin{equation}
\kappa
= {|\dot{x}\ddot{y}-\dot{y}\ddot{x}|
\over ~~~(\dot{x}^2+\dot{y}^2)^{3/2}} .\tag{10.8.7}
\end{equation}
If furthermore \(y=f(x)\text{,}\) then we have \(x=u\text{,}\) \(y=f(u)\text{,}\) so that
\begin{equation}
\kappa = {|\ddot{f}| \over ~~~(1+\dot{f}^2)^{3/2}} .\tag{10.8.8}
\end{equation}
The above formulas for the curvature all require you to compute a cross product, and the original definition requires you to differentiate \(\TT\text{,}\) and hence \(v\text{,}\) which typically involves a messy square root. There is yet another computational method which avoids both of these techniques. This method is particularly useful if you are asked to find all of \(\{\TT,\NN,\kappa\}\text{,}\) and/or if you are asked to find these quantities at a particular point, rather than as functions of \(u\text{.}\)
Compute \(\displaystyle\vv={d\rr\over du}\text{,}\) \(\displaystyle\aa={d^2\rr\over du^2}\text{,}\) and \(v=|\vv|\text{.}\)
(Evaluate at the given point \(t=t_0\) if appropriate.)
Compute \(\TT = {\displaystyle {\vv \over v}}\text{.}\)
Compute \(a_T=\aa\cdot\TT\text{.}\)
Compute \(a_N=\sqrt{|\aa|^2-a_T^2}\) and then \(\kappa = {\displaystyle {a_N \over v^2}}\text{.}\)
Finally, compute \(\displaystyle\NN={\aa-a_T\TT \over a_N}\text{.}\)